
11/19/2014

1

© 2006 Pearson Education

Chapter 7: Inheritance

Presentation slides for

Java Software Solutions
for AP* Computer Science A

2nd Edition

by John Lewis, William Loftus, and Cara Cocking

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2006 by John Lewis, William Loftus, and Cara Cocking. All rights
reserved.

Instructors using the textbook may use and modify these slides for pedagogical purposes.
*AP is a registered trademark of The College Entrance Examination Board which was not involved in

the production of, and does not endorse, this product.

© 2006 Pearson Education
2

Inheritance

 Another fundamental object-oriented technique is
inheritance, used to organize and create reusable
classes

 Chapter 7 focuses on:

• deriving new classes from existing classes

• creating class hierarchies

• abstract classes

• polymorphism via inheritance

• inheritance used in graphical user interfaces

© 2006 Pearson Education
3

Inheritance

 Inheritance allows a software developer to derive a
new class from an existing one

 The existing class is called the parent class, or
superclass, or base class

 The derived class is called the child class or
subclass.

 As the name implies, the child inherits
characteristics of the parent

 That is, the child class inherits the methods and data
defined for the parent class

© 2006 Pearson Education
4

Inheritance

 To tailor a derived class, the programmer can add
new variables or methods, or can modify the
inherited ones

 Software reuse is at the heart of inheritance

 By using existing software components to create
new ones, we capitalize on all the effort that went into
the design, implementation, and testing of the
existing software

11/19/2014

2

© 2006 Pearson Education
5

Inheritance

 Inheritance relationships often are shown graphically
in a UML class diagram, with an arrow with an open
arrowhead pointing to the parent class

Inheritance should create an is-a relationship,
meaning the child is a more specific version of the

parent

Vehicle

Car

© 2006 Pearson Education
6

Deriving Subclasses

 In Java, we use the reserved word extends to
establish an inheritance relationship

 See Words.java (page 393)

 See Book.java (page 394)

 See Dictionary.java (page 395)

class Car extends Vehicle

{

// class contents

}

© 2006 Pearson Education
7

Visibility Modifiers

 Visibility modifiers determine which class members
can be used by derived classes and which cannot

 Variables and methods declared with public
visibility can be used

 Variables and methods declared with private
visibility cannot

© 2006 Pearson Education
8

The super Reference

 Constructors cannot be used in child classes, even
though they have public visibility

 Yet we often want to use the parent's constructor to
set up the "parent's part" of the object

 The super reference can be used to refer to the
parent class, and often is used to invoke the parent's
constructor

 See Words2.java (page 397)

 See Book2.java (page 398)

 See Dictionary2.java (page 399)

11/19/2014

3

© 2006 Pearson Education
9

The super Reference

 A child’s constructor is responsible for calling the
parent’s constructor

 The first line of a child’s constructor should use the
super reference to call the parent’s constructor

 The super reference can also be used to reference
other variables and methods defined in the parent’s
class

© 2006 Pearson Education
10

Multiple Inheritance

 Java supports single inheritance, meaning that a
derived class can have only one parent class

 Multiple inheritance allows a class to be derived from
two or more classes, inheriting the members of all
parents

 Collisions, such as the same variable name in two
parents, have to be resolved

 Java does not support multiple inheritance

 In most cases, the use of interfaces gives us aspects
of multiple inheritance without the overhead

© 2006 Pearson Education
11

Overriding Methods

 A child class can override the definition of an
inherited method in favor of its own

 The new method must have the same signature as
the parent's method, but can have a different body

 The type of the object executing the method
determines which version of the method is invoked

 See Messages.java (page 401)

 See Thought.java (page 402)

 See Advice.java (page 403)

© 2006 Pearson Education
12

Overloading vs. Overriding

 Don't confuse the concepts of overloading and
overriding

 Overloading deals with multiple methods with the
same name in the same class, but with different
signatures

 Overriding deals with two methods, one in a parent
class and one in a child class, that have the same
signature

 Overloading lets you define a similar operation in
different ways for different data

 Overriding lets you define a similar operation in
different ways for different object types

11/19/2014

4

© 2006 Pearson Education
13

Class Hierarchies

 A child class of one parent can be the parent of
another child, forming a class hierarchy

Business

KMart Macys

ServiceBusiness

Kinkos

Retail
Business

© 2006 Pearson Education
14

Class Hierarchies

 Two children of the same parent are called siblings

 Common features should be put as high in the
hierarchy as is reasonable

 An inherited member is passed continually down the
line

 Therefore, a child class inherits from all its ancestor
classes

 There is no single class hierarchy that is appropriate
for all situations

© 2006 Pearson Education
15

The Object Class

 A class called Object is defined in the java.lang
package of the Java standard class library

 All classes are derived from the Object class

 If a class is not explicitly defined to be the child of an
existing class, it is assumed to be the child of the
Object class

 Therefore, the Object class is the ultimate root of all
class hierarchies

© 2006 Pearson Education
16

The Object Class

 The Object class contains a few useful methods,
which are inherited by all classes

 For example, the toString method is defined in the
Object class

 Every time we have defined toString, we have
actually been overriding an existing definition

 The toString method in the Object class is defined
to return a string that contains the name of the
object’s class together along with some other
information

11/19/2014

5

© 2006 Pearson Education
17

The Object Class

 All objects are guaranteed to have a toString
method via inheritance

 Thus the println method can call toString for any
object that is passed to it

 See Academia.java (page 406)
 See Student.java (page 407)
 See StudentAthlete.java (page 408)

© 2006 Pearson Education
18

The Object Class

 The equals method of the Object class returns true
if two references are aliases

 We can override equals in any class to define
equality in some more appropriate way

 The String class (as we've seen) defines the equals
method to return true if two String objects contain
the same characters

 Therefore the String class has overridden the
equals method inherited from Object in favor of its
own version

© 2006 Pearson Education
19

Abstract Classes

 An abstract class is a placeholder in a class
hierarchy that represents a generic concept

 An abstract class cannot be instantiated

 We use the modifier abstract on the class header
to declare a class as abstract:

public abstract class Whatever

{

// contents

}

© 2006 Pearson Education
20

Abstract Classes

 An abstract class often contains abstract methods with
no definitions (like an interface does)

 Unlike an interface, the abstract modifier must be
applied to each abstract method

 An abstract class typically contains non-abstract
methods (with bodies), further distinguishing abstract
classes from interfaces

 A class declared as abstract does not need to contain
abstract methods

11/19/2014

6

© 2006 Pearson Education
21

Abstract Classes

 The child of an abstract class must override the
abstract methods of the parent, or it too will be
considered abstract

 An abstract method cannot be defined as static
(because it has no definition yet)

 The use of abstract classes is a design decision – it
helps us establish common elements in a class that
is too general to instantiate

 See Pets.java (page 411)
 See Pet.java (page 412)
 See Dog.java (page 413)
 See Snake.java (page 414)

© 2006 Pearson Education
22

Indirect Use of Members

 An inherited member can be referenced directly by
name in the child class, as if it were declared in the
child class

 But even if a method or variable is not directly
accessible by a child, it can still be accessed
indirectly through parent methods

 See FoodAnalysis.java (page 416)

 See FoodItem.java (page 417)

 See Pizza.java (page 418)

© 2006 Pearson Education
23

Designing for Inheritance

 Inheritance should be carefully considered during
software design

 Every derivation should be an is-a relationship

 Design a class hierarchy so that it can be reused in
the future

 Use interfaces to create a class that serves multiple
roles (simulating multiple inheritance)

 Override general methods such as toString and
equals appropriately

 See page 419 for more items to keep in mind during
design

© 2006 Pearson Education
24

Polymorphism

 A reference can be polymorphic, which can be
defined as "having many forms"

obj.doIt();

 This line of code might execute different methods at
different times if the object that obj points to
changes

 Polymorphic references are resolved at run time; this
is called dynamic binding

 Careful use of polymorphic references can lead to
elegant, robust software designs

 Polymorphism can be accomplished using
inheritance or using interfaces

11/19/2014

7

© 2006 Pearson Education
25

References and Inheritance

 An object reference can refer to an object of its class,
or to an object of any class related to it by
inheritance

 For example, if the Holiday class is used to derive a
child class called Christmas, then a Holiday
reference could be used to point to a Christmas
object

Holiday day;
day = new Christmas();

Holiday

Christmas

© 2006 Pearson Education
26

References and Inheritance

 Assigning a predecessor object to an ancestor
reference is considered to be a widening conversion,
and can be performed by simple assignment

 Assigning an ancestor object to a predecessor
reference can be done also, but it is considered to be
a narrowing conversion and must be done with a cast

 The widening conversion is the most useful

 An Object reference can be used to refer to any
object

© 2006 Pearson Education
27

Polymorphism via Inheritance

 It is the type of the object being referenced, not the
reference type, that determines which method is
invoked

 Suppose the Holiday class has a method called
celebrate, and the Christmas class overrides it

 Now consider the following invocation:

day.celebrate();

 If day refers to a Holiday object, it invokes the
Holiday version of celebrate; if it refers to a
Christmas object, it invokes the Christmas version

© 2006 Pearson Education
28

Polymorphism via Inheritance

 Consider the following class hierarchy:

StaffMember

Executive Hourly

Volunteer Employee

11/19/2014

8

© 2006 Pearson Education
29

Polymorphism via Inheritance

 Now consider the task of paying all employees

 See Firm.java (page 423)

 See Staff.java (page 424)

 See StaffMember.java (page 426)

 See Volunteer.java (page 427)

 See Employee.java (page 428)

 See Executive.java (page 430)

 See Hourly.java (page 431)

© 2006 Pearson Education
30

Polymorphism via Interfaces

 An interface name can be used as the type of an
object reference variable

Doable obj;

 The obj reference can be used to point to any object
of any class that implements the Doable interface

 The version of doThis that the following line invokes
depends on the type of object that obj is referencing

obj.doThis();

© 2006 Pearson Education
31

Designing for Polymorphism

 During the design phase, opportunities for
polymorphic solutions should be identified

 Use polymorphism when different types of objects
perform the same type of behavior

 Identifying polymorphic opportunities comes easier
with experience

© 2006 Pearson Education
32

Inheritance and GUIs

 An applet is an excellent example of inheritance

 Recall that when we define an applet, we extend the
Applet class or the JApplet class

 The Applet and JApplet classes already handle all
the details about applet creation and execution,
including:

• interaction with a Web browser

• accepting applet parameters through HTML

• enforcing security restrictions

11/19/2014

9

© 2006 Pearson Education
33

Inheritance and GUIs

 Our applet classes only have to deal with issues that
specifically relate to what our particular applet will do

 When we define the paint method of an applet, for
instance, we are actually overriding a method defined
in the Component class, which is ultimately inherited
into the Applet or JApplet class

© 2006 Pearson Education
34

The Component Class Hierarchy

 The Java classes that define GUI components are
part of a class hierarchy

 Swing GUI components typically are derived from the
JComponent class which is derived from the
Container class which is derived from the
Component class

 Many Swing components can serve as (limited)
containers, because they are derived from the
Container class

© 2006 Pearson Education
35

Mouse Events

 Events related to the mouse are separated into
mouse events and mouse motion events

 Mouse Events:

• mouse pressed – the mouse button is pressed down

• mouse released – the mouse button is released

• mouse clicked – the mouse button is pressed down and
released without moving the mouse in between

• mouse entered – the mouse pointer is moved onto (over) a
component

• mouse exited – the mouse pointer is moved off of a
component

© 2006 Pearson Education
36

Mouse Events

 Mouse Motion Events:

• mouse moved – the mouse is moved

• mouse dragged – the mouse is dragged

 To satisfy the implementation of a listener interface,
empty methods must be provided for unused events

 An ArrayList object is used to store objects so they
can be redrawn as necessary

 See Dots.java (page 440)

 See DotsPanel.java (page 441)

11/19/2014

10

© 2006 Pearson Education
37

The Dots Program

© 2006 Pearson Education
38

Mouse Events

 Each time the repaint method is called on an applet,
the window is cleared prior to calling paint

 Rubberbanding is the visual effect caused by
"stretching" a shape as it is drawn using the mouse

 See RubberLines.java (page 444)

 See RubberLinesPanel.java (page 445)

© 2006 Pearson Education
39

The RubberLines Program

© 2006 Pearson Education
40

Event Adapter Classes

 Listener classes can be created by implementing a
particular interface (such as MouseListener
interface)

 A listener also can be created by extending an event
adapter class

 Each listener interface has a corresponding adapter
class (such as the MouseAdapter class)

 Each adapter class implements the corresponding
listener and provides empty method definitions

11/19/2014

11

© 2006 Pearson Education
41

Event Adapter Classes

 When we derive a listener class from an adapter
class, we override any event methods of interest
(such as the mouseClicked method)

 Empty definitions for unused event methods need
not be provided

 See OffCenter.java (page 448)

 See OffCenterPanel.java (page 449)

© 2006 Pearson Education
42

The OffCenter Program

© 2006 Pearson Education
43

Summary

 Chapter 7 has focused on:

• deriving new classes from existing classes

• creating class hierarchies

• abstract classes

• polymorphism via inheritance

• inheritance used in graphical user interfaces

