
11/19/2014

1

© 2006 Pearson Education

Chapter 6: Arrays

Presentation slides for

Java Software Solutions
for AP* Computer Science A

2nd Edition

by John Lewis, William Loftus, and Cara Cocking

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2006 by John Lewis, William Loftus, and Cara Cocking. All rights
reserved.

Instructors using the textbook may use and modify these slides for pedagogical purposes.
*AP is a registered trademark of The College Entrance Examination Board which was not involved in

the production of, and does not endorse, this product.

© 2006 Pearson Education
2

Arrays

 Arrays are objects that help us organize large
amounts of information

 Chapter 6 focuses on:

• array declaration and use

• passing arrays and array elements as parameters

• arrays of objects

• searching an array

• sorting elements in an array

• hashing

• two-dimensional arrays
• the ArrayList class

• polygons, polylines, and more button components

© 2006 Pearson Education
3

Arrays

 An array is an ordered list of values

0 1 2 3 4 5 6 7 8 9

79 87 94 82 67 98 87 81 74 91

An array of size N is indexed from zero to N-1

scores

The entire array
has a single name

Each value has a numeric index

This array holds 10 values that are indexed from 0 to 9

© 2006 Pearson Education
4

Arrays

 A particular value in an array is referenced using the
array name followed by the index in brackets

 For example, the expression

scores[2]

refers to the value 94 (the 3rd value in the array)

 That expression represents a place to store a single
integer and can be used wherever an integer variable
can be used

11/19/2014

2

© 2006 Pearson Education
5

Arrays

 For example, an array element can be assigned a
value, printed, or used in a calculation:

scores[2] = 89;

scores[first] = scores[first] + 2;

mean = (scores[0] + scores[1])/2;

System.out.println ("Top = " + scores[5]);

© 2006 Pearson Education
6

Arrays

 The values held in an array are called array elements

 An array stores multiple values of the same type (the
element type)

 The element type can be a primitive type or an object
reference

 Therefore, we can create an array of integers, or an
array of characters, or an array of String objects,
etc.

 In Java, the array itself is an object

 Therefore the name of the array is a object reference
variable, and the array itself must be instantiated

© 2006 Pearson Education
7

Declaring Arrays

 The scores array could be declared as follows:

int[] scores = new int[10];

 The type of the variable scores is int[] (an array of
integers)

 Note that the type of the array does not specify its
size, but each object of that type has a specific size

 The reference variable scores is set to a new array
object that can hold 10 integers

 See BasicArray.java (page 320)

© 2006 Pearson Education
8

Declaring Arrays

 Some examples of array declarations:

double[] prices = new double[500];

boolean[] flags;

flags = new boolean[20];

char[] codes = new char[1750];

11/19/2014

3

© 2006 Pearson Education
9

Bounds Checking

 Once an array is created, it has a fixed size

 An index used in an array reference must specify a
valid element

 That is, the index value must be in bounds (0 to N-1)

 The Java interpreter throws an
ArrayIndexOutOfBoundsException if an array
index is out of bounds

 This is called automatic bounds checking

© 2006 Pearson Education
10

Bounds Checking

 For example, if the array codes can hold 100 values,
it can be indexed using only the numbers 0 to 99

 If count has the value 100, then the following
reference will cause an exception to be thrown:

System.out.println (codes[count]);

 It’s common to introduce off-by-one errors when
using arrays

for (int index=0; index <= 100; index++)
codes[index] = index*50 + epsilon;

problem

© 2006 Pearson Education
11

Bounds Checking

 Each array object has a public constant called
length that stores the size of the array

 It is referenced using the array name:

scores.length

 Note that length holds the number of elements, not
the largest index

 See ReverseOrder.java (page 322)

 See LetterCount.java (page 324)

© 2006 Pearson Education
12

Initializer Lists

 An initializer list can be used to instantiate and
initialize an array in one step

 The values are delimited by braces and separated by
commas

 Examples:

int[] units = {147, 323, 89, 933, 540,

269, 97, 114, 298, 476};

char[] letterGrades = {'A', 'B', 'C', 'D', ’F'};

11/19/2014

4

© 2006 Pearson Education
13

Initializer Lists

 Note that when an initializer list is used:

• the new operator is not used

• no size value is specified

 The size of the array is determined by the number of
items in the initializer list

 An initializer list can only be used only in the array
declaration

 See Primes.java (page 328)

© 2006 Pearson Education
14

Arrays as Parameters

 An entire array can be passed as a parameter to a
method

 Like any other object, the reference to the array is
passed, making the formal and actual parameters
aliases of each other

 Changing an array element within the method
changes the original

 An array element can be passed to a method as well,
and follows the parameter passing rules of that
element's type

© 2006 Pearson Education
15

Arrays of Objects

 The elements of an array can be object references

 The following declaration reserves space to store 25
references to String objects

String[] words = new String[25];

 It does NOT create the String objects themselves

 Each object stored in an array must be instantiated
separately

 See GradeRange.java (page 330)

© 2006 Pearson Education
16

Command-Line Arguments

 The signature of the main method indicates that it
takes an array of String objects as a parameter

 These values come from command-line arguments
that are provided when the interpreter is invoked

 For example, the following invocation of the
interpreter passes an array of three String objects
into main:

> java StateEval pennsylvania texas arizona

 These strings are stored at indexes 0-2 of the
parameter

 See NameTag.java (page 332)

11/19/2014

5

© 2006 Pearson Education
17

Arrays of Objects

 Objects can have arrays as instance variables

 Many useful structures can be created with arrays
and objects

 The software designer must determine carefully an
organization of data and objects that makes sense
for the situation

 See Tunes.java (page 333)

 See CDCollection.java (page 335)

 See CD.java (page 337)

© 2006 Pearson Education
18

Searching

 A common task when working with arrays is to
search an array for a particular element

 A linear or sequential search examines each element
of the array in turn until the desired element is found

 See Guests.java (page 339)

© 2006 Pearson Education
19

Searching

 A binary search is more efficient than a linear search
but it can only be performed on an ordered list

 A binary search examines the middle element and
moves left if the desired element is less than the
middle, and right if the desired element is greater

 This process repeats until the desired element is
found

 See Searches.java (page 340)

© 2006 Pearson Education
20

Sorting

 Sorting is the process of arranging a list of items in a
particular order

 The sorting process is based on specific value(s)

• sorting a list of test scores in ascending numeric order

• sorting a list of people alphabetically by last name

 There are many algorithms for sorting a list of items

 These algorithms vary in efficiency

 We will examine two specific algorithms:

• Selection Sort

• Insertion Sort

11/19/2014

6

© 2006 Pearson Education
21

Selection Sort

 The approach of Selection Sort:

• select a value and put it in its final place into the list

• repeat for all other values

 In more detail:

• find the smallest value in the list

• switch it with the value in the first position

• find the next smallest value in the list

• switch it with the value in the second position

• repeat until all values are in their proper places

© 2006 Pearson Education
22

Selection Sort

 An example:

original: 3 9 6 1 2

smallest is 1: 1 9 6 3 2

smallest is 2: 1 2 6 3 9

smallest is 3: 1 2 3 6 9

smallest is 6: 1 2 3 6 9

 See SortGrades.java (page 345)

 See Sorts.java (page 346) -- the selectionSort
method

© 2006 Pearson Education
23

Swapping

 Swapping is the process of exchanging two values

 Swapping requires three assignment statements

temp = first;

first = second;

second = temp;

© 2006 Pearson Education
24

Insertion Sort

 The approach of Insertion Sort:

• pick any item and insert it into its proper place in a sorted
sublist

• repeat until all items have been inserted

 In more detail:

• consider the first item to be a sorted sublist (of one item)

• insert the second item into the sorted sublist, shifting the
first item as needed to make room to insert the new addition

• insert the third item into the sorted sublist (of two items),
shifting items as necessary

• repeat until all values are inserted into their proper positions

11/19/2014

7

© 2006 Pearson Education
25

Insertion Sort

 An example:

original: 3 9 6 1 2

insert 9: 3 9 6 1 2

insert 6: 3 6 9 1 2

insert 1: 1 3 6 9 2

insert 2: 1 2 3 6 9

 See Sorts.java (page 346) -- the insertionSort
method

© 2006 Pearson Education
26

Sorting Objects

 Integers have an inherent order, but the ordering
criteria of a collection of objects must be defined

 Recall that a Java interface can be used as a type
name and guarantees that a particular class
implements particular methods

 We can use the Comparable interface and the
compareTo method to develop a generic sort for a set
of objects

 See SortPhoneList.java (page 349)

 See Contact.java (page 350)

 See Sorts.java (page 346) – the second
insertionSort method

© 2006 Pearson Education
27

Comparing Sorts

 Time efficiency refers to how long it takes an
algorithm to run

 Space efficiency refers to the amount of space an
algorithm uses

 Algorithms are compared to each other by
expressing their efficiency in big-oh notation

 An efficiency of O(n) is better than O(n2), where n
refers to the size of the input

 Time efficiency O(2n) means that as the size of the
input increases, the running time increases
exponentially

© 2006 Pearson Education
28

Comparing Sorts

 Both Selection and Insertion sorts are similar in
efficiency

 They both have outer loops that scan all elements,
and inner loops that compare the value of the outer
loop with almost all values in the list

 Approximately n2 number of comparisons are made
to sort a list of size n

 We therefore say that these sorts have efficiency
O(n2), or are of order n2

 Other sorts are more efficient: O(n log2 n)

11/19/2014

8

© 2006 Pearson Education
29

Hashing

 Hashing is a technique used to efficiently store and
retrieve data in an array

 An array used for hashing is called a hash table

 A hash function calculates a hash code for each data
item.

 The hash code is used as an index into the array,
telling where the data item should be stored

 Example: hash function f(n) = n % 7

• Element 18 would be stored in array cell 18 % 7 or 4

© 2006 Pearson Education
30

Two-Dimensional Arrays

 A one-dimensional array stores a list of elements

 A two-dimensional array can be thought of as a table
of elements, with rows and columns

one
dimension

two
dimensions

© 2006 Pearson Education
31

Two-Dimensional Arrays

 To be precise, a two-dimensional array in Java is an
array of arrays

 A two-dimensional array is declared by specifying
the size of each dimension separately:

int[][] scores = new int[12][50];

 A two-dimensional array element is referenced using
two index values

value = scores[3][6]

 The array stored in one row or column can be
specified using one index

© 2006 Pearson Education
32

Two-Dimensional Arrays

Expression Type Description

scores int[][] 2D array of integers, or

array of integer arrays

scores[5] int[] array of integers

scores[5][12] int integer

 See TwoDArray.java (page 356)

 See SodaSurvey.java (page 357)

11/19/2014

9

© 2006 Pearson Education
33

The ArrayList Class

 The ArrayList class is part of the java.util package

 Like an array, it can store a list of values and reference
them with an index

 Unlike an array, an ArrayList object grows and shrinks
as needed

 Items can be inserted or removed with a single method
invocation

 It stores references to the Object class, which allows it to
store any kind of object

 See DestinysChild.java (page 360)

© 2006 Pearson Education
34

Specifying an ArrayList Element Type

 ArrayList is a generic type, which allows us to
specify the type of data each ArrayList should
hold

 For example, ArrayList<Family> holds Family
objects

 See Recipe.java (page 362)

© 2006 Pearson Education
35

ArrayList Efficiency

 The ArrayList class is implemented using an array

 The code of the ArrayList class automatically
expands the array's capacity to accommodate
additional elements

 The array is manipulated so that indexes remain
continuous as elements are added or removed

 If elements are added to and removed from the end of
the list, this processing is fairly efficient

 If elements are inserted and removed from the middle
of the list, the elements are constantly being shifted
around

© 2006 Pearson Education
36

Polygons and Polylines

 Arrays often are helpful in graphics processing

 Polygons and polylines are shapes that can be
defined by values stored in arrays

 A polyline is similar to a polygon except that its
endpoints do not meet, and it cannot be filled

 See Rocket.java (page 365)

11/19/2014

10

© 2006 Pearson Education
37

The Rocket Program

© 2006 Pearson Education
38

The Polygon Class

 The Polygon class, defined in the java.awt package
can be used to define and draw a polygon

 Two versions of the overloaded drawPolygon and
fillPolygon methods each take a single Polygon
object as a parameter

 A Polygon object encapsulates the coordinates of
the polygon

© 2006 Pearson Education
39

Check Boxes

 A check box is a button that can be toggled on or off

 A check box is represented by the JCheckBox class

 A change of state generates an item event

 The ItemListener interface corresponds to item
events

 The itemStateChanged method of the listener
responds when a check box changes state

© 2006 Pearson Education
40

The StyleOptions Program

 A frame is a container that can be used to create
stand-alone GUI applications

 A frame is represented by the JFrame class

 A Font object represents by the font's:
• family name (such as Times or Courier)

• style (bold, italic, or both)

• font size

 See StyleOptions.java (page 369)

 See StyleGUI.java (page 370)

11/19/2014

11

© 2006 Pearson Education
41

The StyleOptions Program

© 2006 Pearson Education
42

Radio Buttons

 A set of radio buttons represents a set of mutually
exclusive options

 When a radio button from a group is selected, the
other button currently "on" in the group is toggled off

 A radio button generates an action event

 See QuoteOptions.java (page 372)

 See QuoteGUI.java (page 374)

© 2006 Pearson Education
43

The QuoteOptions Program

© 2006 Pearson Education
44

Summary

 Chapter 6 has focused on:

• array declaration and use

• passing arrays and array elements as parameters

• arrays of objects

• searching an array

• sorting elements in an array

• hashing

• two-dimensional arrays
• the ArrayList class

• polygons, polylines, and more button components

