
11/19/2014

1

© 2006 Pearson Education

Chapter 4: Writing Classes

Presentation slides for

Java Software Solutions
for AP* Computer Science A

2nd Edition

by John Lewis, William Loftus, and Cara Cocking

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2006 by John Lewis, William Loftus, and Cara Cocking. All rights
reserved.

Instructors using the textbook may use and modify these slides for pedagogical purposes.
*AP is a registered trademark of The College Entrance Examination Board which was not involved in

the production of, and does not endorse, this product.

© 2006 Pearson Education
2

Writing Classes

 We've been using predefined classes. Now we will
learn to write our own classes to define objects

 Chapter 4 focuses on:
• class definitions

• encapsulation and Java modifiers

• method declaration, invocation, and parameter passing

• method overloading

• method decomposition

• graphics-based objects

© 2006 Pearson Education
3

Objects

 An object has:

• state - descriptive characteristics

• behaviors - what it can do (or what can be done to it)

 For example, consider a coin that can be flipped so
that it's face shows either "heads" or "tails"

 The state of the coin is its current face (heads or
tails)

 The behavior of the coin is that it can be flipped

 Note that the behavior of the coin might change its
state

© 2006 Pearson Education
4

Classes

 A class is a blueprint of an object

 It is the model or pattern from which objects are
created

 For example, the String class is used to define
String objects

 Each String object contains specific characters (its
state)

 Each String object can perform services (behaviors)
such as toUpperCase

11/19/2014

2

© 2006 Pearson Education

Classes

 The String class was provided for us by the Java
standard class library

 But we can also write our own classes that define
specific objects that we need

 For example, suppose we want to write a program
that simulates the flipping of a coin

 We can write a Coin class to represent a coin object

© 2006 Pearson Education

Classes

 A class contains data declarations and method
declarations

int x, y;
char ch;

Data declarations

Method declarations

© 2006 Pearson Education

The Coin Class

 In our Coin class we could define the following data:

• face, an integer that represents the current face

• HEADS and TAILS, integer constants that represent the two
possible states

 We might also define the following methods:

• a Coin constructor, to initialize the object

• a flip method, to flip the coin

• a isHeads method, to determine if the current face is heads

• a toString method, to return a string description for
printing

© 2006 Pearson Education

The Coin Class

 See CountFlips.java (page 199)

 See Coin.java (page 200)

 Note that the CountFlips program did not use the
toString method

 A program will not necessarily use every service
provided by an object

 Once the Coin class has been defined, we can use it
again in other programs as needed

11/19/2014

3

© 2006 Pearson Education

Data Scope

 The scope of data is the area in a program in which
that data can be used (referenced)

 Data declared at the class level can be used by all
methods in that class

 Data declared within a method can be used only in
that method

 Data declared within a method is called local data

© 2006 Pearson Education

Instance Data

 The face variable in the Coin class is called instance
data because each instance (object) of the Coin
class has its own

 A class declares the type of the data, but it does not
reserve any memory space for it

 Every time a Coin object is created, a new face
variable is created as well

 The objects of a class share the method definitions,
but each has its own data space

 That's the only way two objects can have different
states

© 2006 Pearson Education

Instance Data

See FlipRace.java (page 203)

© 2006 Pearson Education
12

Encapsulation

 We can take one of two views of an object:

• internal - the variables the object holds and the methods
that make the object useful

• external - the services that an object provides and how the
object interacts

 From the external view, an object is an encapsulated
entity, providing a set of specific services

 These services define the interface to the object

 Recall from Chapter 2 that an object is an
abstraction, hiding details from the rest of the system

11/19/2014

4

© 2006 Pearson Education
13

Encapsulation

 An object should be self-governing

 Any changes to the object's state (its variables)
should be made only by that object's methods

 We should make it difficult, if not impossible, to
access an object’s variables other than via its
methods

 The user, or client, of an object can request its
services, but it should not have to be aware of how
those services are accomplished

© 2006 Pearson Education
14

Encapsulation

 An encapsulated object can be thought of as a black
box

 Its inner workings are hidden to the client, which
invokes only the interface methods

Client Methods

Data

© 2006 Pearson Education
15

Visibility Modifiers

 In Java, we accomplish encapsulation through the
appropriate use of visibility modifiers

 A modifier is a Java reserved word that specifies
particular characteristics of a method or data value

 We've used the modifier final to define a constant

 We will study two visibility modifiers: public and
private

© 2006 Pearson Education
16

Visibility Modifiers

 Members of a class that are declared with public
visibility can be accessed from anywhere

 Public variables violate encapsulation

 Members of a class that are declared with private
visibility can only be accessed from inside the class

 Members declared without a visibility modifier have
default visibility and can be accessed by any class in
the same package

11/19/2014

5

© 2006 Pearson Education
17

Visibility Modifiers

 Methods that provide the object's services are
usually declared with public visibility so that they can
be invoked by clients

 Public methods are also called service methods

 A method created simply to assist a service method
is called a support method

 Since a support method is not intended to be called
by a client, it should not be declared with public
visibility

© 2006 Pearson Education

Visibility Modifiers

public private

Variables

Methods

Violate
encapsulation

Enforce
encapsulation

Provide services
to clients

Support other
methods in the

class

© 2006 Pearson Education

Driver Programs

 A driver progam drives the use of other, more
interesting parts of a program

 Driver programs are often used to test other parts of
the software

 The Banking class contains a main method that
drives the use of the Account class, exercising its
services

 See Banking.java (page 209)

 See Account.java (page 211)

© 2006 Pearson Education

Method Declarations

 A method declaration specifies the code that will be
executed when the method is invoked (or called)

 When a method is invoked, the flow of control jumps
to the method and executes its code

 When complete, the flow returns to the place where
the method was called and continues

 The invocation may or may not return a value,
depending on how the method is defined

11/19/2014

6

© 2006 Pearson Education

myMethod();

myMethodcompute

Method Control Flow

 The called method can be within the same class, in
which case only the method name is needed

© 2006 Pearson Education

doIt helpMe

helpMe();obj.doIt();

main

Method Control Flow

 The called method can be part of another class or
object

© 2006 Pearson Education

Method Header

 A method declaration begins with a method header

char calc (int num1, int num2, String message)

method
name

return
type

parameter list

The parameter list specifies the type
and name of each parameter

The name of a parameter in the method
declaration is called a formal argument

© 2006 Pearson Education

Method Body

 The method header is followed by the method body

char calc (int num1, int num2, String message)

{
int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

The return expression must be
consistent with the return type

sum and result
are local data

They are created
each time the
method is called, and
are destroyed when
it finishes executing

11/19/2014

7

© 2006 Pearson Education
25

The return Statement

 The return type of a method indicates the type of
value that the method sends back to the calling
location

 A method that does not return a value has a void
return type

 A return statement specifies the value that will be
returned

return expression;

 Its expression must conform to the return type

© 2006 Pearson Education

Parameters

 Each time a method is called, the actual parameters
in the invocation are copied into the formal
parameters

char calc (int num1, int num2, String message)

{
int sum = num1 + num2;
char result = message.charAt (sum);

return result;
}

ch = obj.calc (25, count, "Hello");

© 2006 Pearson Education

Preconditions and Postconditions

 A precondition is a condition that should be true
when a method is called

 A postcondition is a condition that should be true
when a method finishes executing

 These conditions are expressed in comments above
the method header

 Both preconditions and postconditions are a kind of
assertion, a logical statement that can be true or
false which represents a programmer´s assumptions
about a program

© 2006 Pearson Education
28

Constructors Revisited

 Recall that a constructor is a special method that is
used to initialize a newly created object

 When writing a constructor, remember that:

• it has the same name as the class

• it does not return a value

• it has no return type, not even void

• it typically sets the initial values of instance variables

 The programmer does not have to define a
constructor for a class

11/19/2014

8

© 2006 Pearson Education

Local Data

 Local variables can be declared inside a method

 The formal parameters of a method create automatic
local variables when the method is invoked

 When the method finishes, all local variables are
destroyed (including the formal parameters)

 Keep in mind that instance variables, declared at the
class level, exists as long as the object exists

 Any method in the class can refer to instance data

© 2006 Pearson Education

Accessors and Mutators

 Since instance data usually has private visibility, it
can only be accessed through methods

 An accessor method provides read-only access to a
particular value

 A mutator method changes a particular value

 For a data value X, accessor and mutator methods
are usually named getX and setX

© 2006 Pearson Education
31

Overloading Methods

 Method overloading is the process of using the same
method name for multiple methods

 The signature of each overloaded method must be
unique

 The signature includes the number, type, and order
of the parameters

 The compiler determines which version of the
method is being invoked by analyzing the parameters

 The return type of the method is not part of the
signature

© 2006 Pearson Education

Overloading Methods

double tryMe (int x)
{

return x + .375;
}

Version 1

double tryMe (int x, double y)
{

return x*y;
}

Version 2

result = tryMe (25, 4.32)

Invocation

11/19/2014

9

© 2006 Pearson Education
33

Overloaded Methods

 The println method is overloaded:

println (String s)

println (int i)

println (double d)

and so on...

 The following lines invoke different versions of the
println method:

System.out.println ("The total is:");

System.out.println (total);

© 2006 Pearson Education
34

Overloading Methods

 Constructors can be overloaded

 Overloaded constructors provide multiple ways to
initialize a new object

 See SnakeEyes.java (page 221)

 See Die.java (page 222)

© 2006 Pearson Education

Method Decomposition

 A method should be relatively small, so that it can be
understood as a single entity

 A potentially large method should be decomposed
into several smaller methods as needed for clarity

 A service method of an object may call one or more
support methods to accomplish its goal

 Support methods could call other support methods if
appropriate

© 2006 Pearson Education

Pig Latin

 The process of translating an English sentence into
Pig Latin can be decomposed into the process of
translating each word

 The process of translating a word can be
decomposed into the process of translating words
that

• begin with vowels

• begin with consonant blends (sh, cr, tw, etc.)

• begins with single consonants

 See PigLatin.java (page 224)

 See PigLatinTranslator.java (page 225)

11/19/2014

10

© 2006 Pearson Education

Object Relationships

 Objects can have various types of relationships to
each other

 A general association is sometimes referred to as a
use relationship

 A general association indicates that one object (or
class) uses or refers to another object (or class) in
some way

Author Book
writes

© 2006 Pearson Education

Object Relationships

 Some use associations occur between objects of the
same class

 For example, we might add two Rational number
objects together as follows:

r3 = r1.add(r2);

 One object (r1) is executing the method and another
(r2) is passed as a parameter

 See RationalNumbers.java (page 229)

 See Rational.java (page 231)

© 2006 Pearson Education

Aggregation

 An aggregate object is an object that contains
references to other objects

 For example, an Account object contains a reference
to a String object (the owner's name)

 An aggregate object represents a has-a relationship

 A bank account has a name

 Likewise, a student may have one or more addresses

 See StudentBody.java (page 235)

 See Student.java (page 236)

 See Address.java (page 237)

© 2006 Pearson Education

Applet Methods

 In previous examples we've used the paint method
of the Applet class to draw on an applet

 The Applet class has several methods that are
invoked automatically at certain points in an applet's
life

 The init method, for instance, is executed only once
when the applet is initially loaded

 The start and stop methods are called when the
applet becomes active or inactive

 The Applet class also contains other methods that
generally assist in applet processing

11/19/2014

11

© 2006 Pearson Education

Graphical Objects

 Any object we define by writing a class can have
graphical elements

 The object must simply obtain a graphics context (a
Graphics object) in which to draw

 An applet can pass its graphics context to another
object just as it can any other parameter

 See LineUp.java (page 240)

 See StickFigure.java (page 242)

© 2006 Pearson Education

Summary

 Chapter 4 has focused on:

• class definitions

• encapsulation and Java modifiers

• method declaration, invocation, and parameter passing

• method overloading

• method decomposition

• graphics-based objects

