
1

© 2006 Pearson Education

Chapter 3: Program Statements

Presentation slides for

Java Software Solutions
for AP* Computer Science A

2nd Edition

by John Lewis, William Loftus, and Cara Cocking

Java Software Solutions is published by Addison-Wesley

Presentation slides are copyright 2006 by John Lewis, William Loftus, and Cara Cocking. All rights
reserved.

Instructors using the textbook may use and modify these slides for pedagogical purposes.
*AP is a registered trademark of The College Entrance Examination Board which was not involved in

the production of, and does not endorse, this product.

© 2006 Pearson Education
2

Program Statements

 Now we will examine some other program statements

 Chapter 3 focuses on:

• program development stages

• the flow of control through a method

• decision-making statements

• expressions for making complex decisions

• repetition statements

• drawing with conditionals and loops

© 2006 Pearson Education
3

Program Development

 The creation of software involves four basic
activities:

• establishing the requirements

• creating a design

• implementing the code

• testing the implementation

 The development process is much more involved
than this, but these are the four basic development
activities

© 2006 Pearson Education
4

Requirements

 Software requirements specify the tasks a program
must accomplish (what to do, not how to do it)

 They often include a description of the user interface

 An initial set of requirements often are provided, but
usually must be critiqued, modified, and expanded

 Often it is difficult to establish detailed,
unambiguous, complete requirements

 Careful attention to the requirements can save
significant time and expense in the overall project

2

© 2006 Pearson Education
5

Design

 A software design specifies how a program will
accomplish its requirements

 A design includes one or more algorithms to
accomplish its goal

 An algorithm is a step-by-step process for solving a
problem

 An algorithm may be expressed in pseudocode,
which is code-like, but does not necessarily follow
any specific syntax

 In object-oriented development, the design
establishes the classes, objects, methods, and data
that are required

© 2006 Pearson Education
6

Implementation

 Implementation is the process of translating a design
into source code

 Most novice programmers think that writing code is
the heart of software development, but actually it
should be the least creative step

 Almost all important decisions are made during
requirements and design stages

 Implementation should focus on coding details,
including style guidelines and documentation

© 2006 Pearson Education
7

Testing

 A program should be executed multiple times with
various input in an attempt to find errors

 Debugging is the process of discovering the causes
of problems and fixing them

 Programmers often think erroneously that there is
"only one more bug" to fix

 Tests should consider design details as well as
overall requirements

© 2006 Pearson Education
8

Flow of Control

 Unless specified otherwise, the order of statement
execution through a method is linear: one statement
after the other in sequence

 Some programming statements modify that order,
allowing us to:

• decide whether or not to execute a particular statement, or

• perform a statement over and over, repetitively

 These decisions are based on a boolean expression
(also called a condition) that evaluates to true or
false

 The order of statement execution is called the flow of
control

3

© 2006 Pearson Education
9

Conditional Statements

 A conditional statement lets us choose which
statement will be executed next

 Therefore they are sometimes called selection
statements

 Conditional statements give us the power to make
basic decisions

 Some conditional statements in Java are
• the if statement

• the if-else statement

© 2006 Pearson Education
10

The if Statement

 The if statement has the following syntax:

if (condition)
statement;

if is a Java
reserved word

The condition must be a boolean expression.
It must evaluate to either true or false.

If the condition is true, the statement is executed.
If it is false, the statement is skipped.

© 2006 Pearson Education
11

The if Statement

 An example of an if statement:

if (sum > MAX)
delta = sum - MAX;

System.out.println ("The sum is " + sum);

First, the condition is evaluated. The value of sum
is either greater than the value of MAX, or it is not.

If the condition is true, the assignment statement is executed.
If it is not, the assignment statement is skipped.

Either way, the call to println is executed next.

 See Age.java (page 130)

© 2006 Pearson Education
12

Logic of an if statement

condition
evaluated

false

statement

true

4

© 2006 Pearson Education
13

Boolean Expressions

 A condition often uses one of Java's equality
operators or relational operators, which all return
boolean results:

== equal to

!= not equal to

< less than

> greater than

<= less than or equal to

>= greater than or equal to

 Note the difference between the equality operator
(==) and the assignment operator (=)

© 2006 Pearson Education
14

The if-else Statement

 An else clause can be added to an if statement to
make an if-else statement

if (condition)
statement1;

else
statement2;

 See Wages.java (page 134)

 If the condition is true, statement1 is executed; if
the condition is false, statement2 is executed

 One or the other will be executed, but not both

© 2006 Pearson Education
15

Logic of an if-else statement

condition
evaluated

statement1

true false

statement2

© 2006 Pearson Education
16

Block Statements

 Several statements can be grouped together into a
block statement

 A block is delimited by braces : { … }

 A block statement can be used wherever a statement
is called for by the Java syntax

 For example, in an if-else statement, the if
portion, or the else portion, or both, could be block
statements

 See Guessing.java (page 136)

5

© 2006 Pearson Education
17

Nested if Statements

 The statement executed as a result of an if
statement or else clause could be another if
statement

 These are called nested if statements

 See MinOfThree.java (page 138)

 An else clause is matched to the last unmatched if
(no matter what the indentation implies)

 Braces can be used to specify the if statement to
which an else clause belongs

© 2006 Pearson Education
18

Logical Operators

 Boolean expressions can use the following logical
operators:

! Logical NOT

&& Logical AND

|| Logical OR

 They all take boolean operands and produce boolean
results

 Logical NOT is a unary operator (it operates on one
operand)

 Logical AND and logical OR are binary operators
(each operates on two operands)

© 2006 Pearson Education
19

Logical NOT

 The logical NOT operation is also called logical
negation or logical complement

 If some boolean condition a is true, then !a is false;
if a is false, then !a is true

 Logical expressions can be shown using truth
tables

a !a

true false

false true

© 2006 Pearson Education
20

Logical AND and Logical OR

 The logical AND expression

a && b

is true if both a and b are true, and false otherwise

 The logical OR expression

a || b

is true if a or b or both are true, and false otherwise

6

© 2006 Pearson Education
21

Truth Tables

 A truth table shows the possible true/false
combinations of the terms

 Since && and || each have two operands, there are
four possible combinations of conditions a and b

a b a && b a || b

true true true true

true false false true

false true false true

false false false false

© 2006 Pearson Education
22

Logical Operators

 Conditions can use logical operators to form
complex expressions

if (total < MAX+5 && !found)
System.out.println ("Processing…");

 Logical operators have precedence relationships
among themselves and with other operators

• all logical operators have lower precedence than the
relational or arithmetic operators

• logical NOT has higher precedence than logical AND and
logical OR

© 2006 Pearson Education
23

Short Circuited Operators

 The processing of logical AND and logical OR is
“short-circuited”

 If the left operand is sufficient to determine the
result, the right operand is not evaluated

if (count != 0 && total/count > MAX)
System.out.println ("Testing…");

 This type of processing must be used carefully

© 2006 Pearson Education
24

Truth Tables

 Specific expressions can be evaluated using truth
tables

total < MAX found !found total < MAX && !found

false false true false

false true false false

true false true true

true true false false

7

© 2006 Pearson Education
25

Comparing Characters

 We can use the relational operators on character data

 The results are based on the Unicode character set

 The following condition is true because the character
+ comes before the character J in the Unicode
character set:

if ('+' < 'J')
System.out.println ("+ is less than J");

 The uppercase alphabet (A-Z) followed by the
lowercase alphabet (a-z) appear in alphabetical order
in the Unicode character set

© 2006 Pearson Education
26

Comparing Strings

 Remember that a character string in Java is an object

 We cannot use the relational operators to compare
strings

 The equals method can be called with strings to
determine if two strings contain exactly the same
characters in the same order

 The String class also contains a method called
compareTo to determine if one string comes before
another (based on the Unicode character set)

© 2006 Pearson Education
27

Lexicographic Ordering

 Because comparing characters and strings is based
on a character set, it is called a lexicographic
ordering

 This is not strictly alphabetical when uppercase and
lowercase characters are mixed

 For example, the string "Great" comes before the
string "fantastic" because all of the uppercase
letters come before all of the lowercase letters in
Unicode

 Also, short strings come before longer strings with
the same prefix (lexicographically)

 Therefore "book" comes before "bookcase"

© 2006 Pearson Education
28

Comparing Float Values

 We also have to be careful when comparing two
floating point values (float or double) for equality

 You should rarely use the equality operator (==)
when comparing two floats

 In many situations, you might consider two floating
point numbers to be "close enough" even if they
aren't exactly equal

 Therefore, to determine the equality of two floats, you
may want to use the following technique:

if (Math.abs(f1 - f2) < 0.00001)
System.out.println ("Essentially equal.");

8

© 2006 Pearson Education
29

More Operators

 To round out our knowledge of Java operators, let's
examine a few more

 In particular, we will examine

• the increment and decrement operators

• the assignment operators

© 2006 Pearson Education
30

Increment and Decrement

 The increment and decrement operators are
arithmetic and operate on one operand

 The increment operator (++) adds one to its operand

 The decrement operator (--) subtracts one from its
operand

 The statement

count++;

is functionally equivalent to

count = count + 1;

© 2006 Pearson Education
31

Assignment Operators

 Often we perform an operation on a variable, and
then store the result back into that variable

 Java provides assignment operators to simplify that
process

 For example, the statement

num += count;

is equivalent to

num = num + count;

© 2006 Pearson Education
32

Assignment Operators

 There are many assignment operators, including the
following:

Operator

+=
-=
*=
/=
%=

Example

x += y
x -= y
x *= y
x /= y
x %= y

Equivalent To

x = x + y
x = x - y
x = x * y
x = x / y
x = x % y

9

© 2006 Pearson Education
33

Assignment Operators

 The right hand side of an assignment operator can be
a complex expression

 The entire right-hand expression is evaluated first,
then the result is combined with the original variable

 Therefore

result /= (total-MIN) % num;

is equivalent to

result = result / ((total-MIN) % num);

© 2006 Pearson Education
34

Assignment Operators

 The behavior of some assignment operators depends
on the types of the operands

 If the operands to the += operator are strings, the
assignment operator performs string concatenation

 The behavior of an assignment operator (+=) is
always consistent with the behavior of the "regular"
operator (+)

© 2006 Pearson Education
35

Repetition Statements

 Repetition statements allow us to execute a
statement multiple times

 Often they are referred to as loops

 Like conditional statements, they are controlled by
boolean expressions

 The text covers two kinds of repetition statements:

• the while loop

• the for loop

 The programmer should choose the right kind of loop
for the situation

© 2006 Pearson Education
36

The while Statement

 The while statement has the following syntax:

while (condition)
statement;

while is a
reserved word

If the condition is true, the statement is executed.
Then the condition is evaluated again.

The statement is executed repeatedly until
the condition becomes false.

10

© 2006 Pearson Education
37

Logic of a while Loop

statement

true

condition
evaluated

false

© 2006 Pearson Education
38

The while Statement

 Note that if the condition of a while statement is
false initially, the statement is never executed

 Therefore, the body of a while loop will execute zero
or more times

 See Counter.java (page 147)

 See Average.java (page 148)
• A sentinel value indicates the end of the input
• The variable sum maintains a running sum

 See WinPercentage.java (page 151)
• A loop is used to validate the input, making the program

more robust

© 2006 Pearson Education
39

Infinite Loops

 The body of a while loop eventually must make the
condition false

 If not, it is an infinite loop, which will execute until the
user interrupts the program

 This is a common logical error

 You should always double check to ensure that your
loops will terminate normally

 See Forever.java (page 152)

© 2006 Pearson Education
40

Nested Loops

 Similar to nested if statements, loops can be nested
as well

 That is, the body of a loop can contain another loop

 Each time through the outer loop, the inner loop goes
through its full set of iterations

 See PalindromeTester.java (page 155)

11

© 2006 Pearson Education
41

Iterators

 An iterator is an object that has methods that allow
you to process a collection of items one at a time

 The hasNext and next methods are used to loop
through the collection

 Several classes in the Java class library define
iterator objects, including Scanner

 See URLDissector.java (page 158)

while (myCollection.hasNext())
{

System.out.println(myCollection.next());
}

© 2006 Pearson Education
42

The for Statement

 The for statement has the following syntax:

for (initialization ; condition ; increment)
statement;

Reserved
word

The initialization
is executed once

before the loop begins

The statement is
executed until the

condition becomes false

The increment portion is executed at the end of each iteration
The condition-statement-increment cycle is executed repeatedly

© 2006 Pearson Education
43

The for Statement

 A for loop is functionally equivalent to the following
while loop structure:

initialization;
while (condition)
{

statement;
increment;

}

© 2006 Pearson Education
44

Logic of a for loop

statement

true

condition
evaluated

false

increment

initialization

12

© 2006 Pearson Education
45

The for Statement

 Like a while loop, the condition of a for statement
is tested prior to executing the loop body

 Therefore, the body of a for loop will execute zero or
more times

 It is well suited for executing a loop a specific
number of times that can be determined in advance

 See Counter2.java (page 161)

 See Multiples.java (page 163)

 See Stars.java (page 165)

© 2006 Pearson Education
46

The for Statement

 Each expression in the header of a for loop is
optional

• If the initialization is left out, no initialization is
performed

• If the condition is left out, it is always considered to be
true, and therefore creates an infinite loop

• If the increment is left out, no increment operation is
performed

 Both semi-colons are always required in the for loop
header

© 2006 Pearson Education
47

Iterators and for Loops

 A variation of the for loop, called the foreach loop,
allows us to process collections just like iterators,
but without the complicated syntax

 If bookList is an iterator object that manages Book
objects, we can do the following:

 See IceCreamShop.java (page 167)

for (Book myBook : bookList)
{

System.out.println(myBook);
}

© 2006 Pearson Education
48

Choosing a Loop Structure

 When you can’t determine how many times you want
to execute the loop body, use a while statement

 If you can determine how many times you want to
execute the loop body, use a for statement

13

© 2006 Pearson Education
49

Program Development

 We now have several additional statements and
operators at our disposal

 Following proper development steps is important

 Suppose you were given some initial requirements:

• accept a series of test scores

• compute the average test score

• determine the highest and lowest test scores

• display the average, highest, and lowest test scores

© 2006 Pearson Education
50

Program Development

 Requirements Analysis – clarify and flesh out
specific requirements

• How much data will there be?

• How should data be accepted?

• Is there a specific output format required?

 After conferring with the client, we determine:

• the program must process an arbitrary number of test
scores

• the program should accept input interactively

• the average should be presented to two decimal places

 The process of requirements analysis may take a
long time

© 2006 Pearson Education
51

Program Development

 Design – determine a possible general solution

• Input strategy? (Sentinel value?)

• Calculations needed?

 An initial algorithm might be expressed in
pseudocode

 Multiple versions of the solution might be needed to
refine it

 Alternatives to the solution should be carefully
considered

© 2006 Pearson Education
52

Program Development

 Implementation – translate the design into source
code

 Make sure to follow coding and style guidelines

 Implementation should be integrated with compiling
and testing your solution

 This process mirrors a more complex development
model we'll eventually need to develop more complex
software

 The result is a final implementation

 See ExamGrades.java (page 170)

14

© 2006 Pearson Education
53

Program Development

 Testing – attempt to find errors that may exist in your
programmed solution

 Compare your code to the design and resolve any
discrepancies

 Determine test cases that will stress the limits and
boundaries of your solution

 Carefully retest after finding and fixing an error

© 2006 Pearson Education
54

More Drawing Techniques

 Conditionals and loops can greatly enhance our
ability to control graphics

 See Bullseye.java (page 173)

 See Boxes.java (page 175)

 See BarHeights.java (page 177)

© 2006 Pearson Education
55

Summary

 Chapter 3 has focused on:

• program development stages

• the flow of control through a method

• decision-making statements

• expressions for making complex decisions

• repetition statements

• drawing with conditionals and loops

