Chapter 1: Computer Systems

We first need to explore the fundamentals of computer processing.

Chapter 1 focuses on:
- components of a computer
- how those components interact
- how computers store and manipulate information
- computer networks
- the Internet and the World Wide Web
- programming and programming languages
- graphic systems

Hardware and Software

- Hardware
 - the physical, tangible parts of a computer
 - keyboard, monitor, disks, wires, chips, etc.

- Software
 - programs and data
 - a program is a series of instructions

- A computer requires both hardware and software
- Each is essentially useless without the other

CPU and Main Memory

- Chip that executes program commands
 - Intel Pentium 4 or Sun ultraSPARC III Processor
- Primary storage area for programs and data that are in active use
 - Main Memory
- Synonymous with RAM
Secondary Memory Devices

Secondary memory devices provide long-term storage.

- Hard disks
- Floppy disks
- ZIP disks
- Writable CDs
- Tapes

Information is moved between main memory and secondary memory as needed.

Main Memory

Central Processing Unit

Floppy Disk

Hard Disk

Software Categories

- Operating System
 - controls all machine activities
 - provides the user interface to the computer
 - manages resources such as the CPU and memory
 - Windows XP, Windows 2000, Unix, Linux, Mac OS

- Application program
 - generic term for any other kind of software
 - word processors, missile control systems, games

- Most operating systems and application programs have a graphical user interface (GUI)

Input / Output Devices

I/O devices facilitate user interaction.

- Monitor
- Keyboard
- Mouse
- Joystick
- Bar code scanner
- Touch screen

Analog vs. Digital

- There are two basic ways to store and manage data:
 - **Analog**
 - continuous, in direct proportion to the data represented
 - music on a record album - a needle rides on ridges in the grooves that are directly proportional to the voltages sent to the speaker
 - **Digital**
 - the information is broken down into pieces, and each piece is represented separately
 - music on a compact disc - the disc stores numbers representing specific voltage levels sampled at specific times
Digital Information

- Computers store all information digitally:
 - numbers
 - text
 - graphics and images
 - video
 - audio
 - program instructions
- In some way, all information is digitized - broken down into pieces and represented as numbers.

Binary Numbers

- Once information is digitized, it is represented and stored in memory using the binary number system.
- A single binary digit (0 or 1) is called a bit.
- Devices that store and move information are cheaper and more reliable if they have to represent only two states.
- A single bit can represent two possible states, like a light bulb that is either on (1) or off (0).
- Permutations of bits are used to store values.

Representing Text Digitally

- For example, every character is stored as a number, including spaces, digits, and punctuation.
- Corresponding upper and lower case letters are separate characters.

```
Hi, Heather.
72 106 44 32 72 101 97 116 104 101 114 46
```

Bit Permutations

<table>
<thead>
<tr>
<th>1 bit</th>
<th>2 bits</th>
<th>3 bits</th>
<th>4 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>00</td>
<td>000</td>
<td>1000</td>
</tr>
<tr>
<td>1</td>
<td>01</td>
<td>001</td>
<td>1001</td>
</tr>
<tr>
<td>10</td>
<td>010</td>
<td>0010</td>
<td>1010</td>
</tr>
<tr>
<td>11</td>
<td>011</td>
<td>0011</td>
<td>1011</td>
</tr>
<tr>
<td>100</td>
<td>0100</td>
<td>0110</td>
<td>1110</td>
</tr>
<tr>
<td>101</td>
<td>0101</td>
<td>0111</td>
<td>1111</td>
</tr>
<tr>
<td>110</td>
<td>0110</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>0111</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Each additional bit doubles the number of possible permutations.
Bit Permutations

- Each permutation can represent a particular item
- There are 2^N permutations of N bits
- Therefore, N bits are needed to represent 2^N unique items

<table>
<thead>
<tr>
<th>How many</th>
<th>1 bit</th>
<th>2 bits</th>
<th>3 bits</th>
<th>4 bits</th>
<th>5 bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>items can be represented by</td>
<td>$2^1 = 2$ items</td>
<td>$2^2 = 4$ items</td>
<td>$2^3 = 8$ items</td>
<td>$2^4 = 16$ items</td>
<td>$2^5 = 32$ items</td>
</tr>
</tbody>
</table>

Memory

- Main memory is divided into many memory locations (or cells)
- Each memory cell has a numeric address, which uniquely identifies it

A Computer Specification

- Consider the following specification for a personal computer:
 - 2.8 GHz Pentium 4 Processor
 - 512 MB RAM
 - 80 GB Hard Disk
 - 48x CD-RW / DVD-ROM Combo Drive
 - 17" Flat Screen Video Display with 1280 x 1024 resolution
 - 56 Kbps Modem
- What does it all mean?

Storing Information

- Each memory cell stores a set number of bits (usually 8 bits, or one byte)
- Large values are stored in consecutive memory locations
Storage Capacity

- Every memory device has a storage capacity, indicating the number of bytes it can hold.
- Capacities are expressed in various units:

<table>
<thead>
<tr>
<th>Unit</th>
<th>Symbol</th>
<th>Number of Bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>kilobyte</td>
<td>KB</td>
<td>$2^{10} = 1024$</td>
</tr>
<tr>
<td>megabyte</td>
<td>MB</td>
<td>2^{20} (over 1 million)</td>
</tr>
<tr>
<td>gigabyte</td>
<td>GB</td>
<td>2^{30} (over 1 billion)</td>
</tr>
<tr>
<td>terabyte</td>
<td>TB</td>
<td>2^{40} (over 1 trillion)</td>
</tr>
</tbody>
</table>

Memory

- Main memory is volatile - stored information is lost if the electric power is removed.
- Secondary memory devices are nonvolatile.
- Main memory and disks are direct access devices - information can be reached directly.
- The terms direct access and random access often are used interchangeably.
- A magnetic tape is a sequential access device since its data is arranged in a linear order - you must get by the intervening data in order to access other information.

RAM vs. ROM

- RAM - Random Access Memory (direct access)
- ROM - Read-Only Memory
- The terms RAM and main memory are basically interchangeable.
- ROM could be a set of memory chips, or a separate device, such as a CD ROM.
- Both RAM and ROM are random (direct) access devices!
- RAM probably should be called Read-Write Memory.

Compact Discs

- A CD-ROM is portable read-only memory.
- A microscopic pit on a CD represents a binary 1 and a smooth area represents a binary 0.
- A low-intensity laser reflects strongly from a smooth area and weakly from a pit.
- A CD-Recordable (CD-R) drive can be used to write information to a CD once.
- A CD-Rewritable (CD-RW) can be erased and reused.
- The speed of a CD drive (48x) describes the maximum data transfer speed. Writing is typically much slower than reading.
DVDs

- A DVD is the same size as a CD, but can store much more information.
- The format of a DVD stores more bits per square inch.
- A CD can store 650 MB, while a standard DVD can store 4.7 GB:
 - A double sided DVD can store 9.4 GB.
 - Other advanced techniques can bring the capacity up to 17.0 GB.
- There are various recordable DVD technologies – the market will determine which will dominate.

The Central Processing Unit

- The CPU contains:
 - Arithmetic / Logic Unit: Performs calculations and makes decisions.
 - Control Unit: Coordinates processing steps.
 - Registers: Small storage areas.

- A CPU is on a chip called a microprocessor.
- It continuously follows the *fetch-decode-execute* cycle:
 - *Fetch*: Retrieve an instruction from main memory.
 - *Decode*: Determine what the instruction is.
 - *Execute*: Carry out the instruction.

- The speed of a CPU is controlled by the system clock.
- The system clock generates an electronic pulse at regular intervals.
- The pulses coordinate the activities of the CPU.
- The speed is measured in megahertz (MHz).
Monitor

- The size of a monitor (17") is measured diagonally, like a television screen
- Most monitors these days have multimedia capabilities: text, graphics, video, etc.
- A monitor has a certain maximum resolution, indicating the number of picture elements, called pixels, that it can display (such as 1280 by 1024)
- High resolution (more pixels) produces sharper pictures

Networks

- A network is two or more computers that are connected so that data and resources can be shared
- Most computers are connected to some kind of network
- Each computer has its own network address, which uniquely identifies it among the others
- A file server is a network computer dedicated to storing programs and data that are shared among network users

Modem

- Data transfer devices allow information to be sent and received between computers
- Many computers include a modulator-demodulator or modem, which allows information to be moved across a telephone line
- A data transfer device has a maximum data transfer rate
- A modem, for instance, may have a data transfer rate of 56,000 bits per second (bps)

Network Connections

- Each computer in a network could be directly connected to every other computer in the network
- These are called point-to-point connections

Adding a computer requires a new communication line for each computer already in the network

This technique is not practical for more than a few close machines
Network Connections

- Most networks share a single communication line
- Adding a new computer to the network is relatively easy

Network traffic must take turns using the line, which introduces delays

Wide-Area Networks

A Wide-Area Network (WAN) connects two or more LANs, often over long distances

A LAN usually is owned by one organization, but a WAN often connects groups in different countries

Local-Area Networks

A Local-Area Network (LAN) covers a small distance and a small number of computers

A LAN often connects the machines in a single room or building

The Internet

- The Internet is a WAN which spans the entire planet
- The word Internet comes from the term internetworking, which implies communication among networks
- It started as a United States government project, sponsored by the Advanced Research Projects Agency (ARPA) - originally it was called the ARPANET
- The Internet grew quickly throughout the 1980s and 90s
- Less than 600 computers were connected to the Internet in 1983; by the year 2000 there were over 10 million
TCP/IP

- A protocol is a set of rules that determine how things communicate with each other.
- The software which manages Internet communication follows a suite of protocols called TCP/IP.
- The Internet Protocol (IP) determines the format of the information as it is transferred.
- The Transmission Control Protocol (TCP) dictates how messages are reassembled and handles lost information.

Domain Names

- The last part of each domain name, called a top-level domain (TLD), indicates the type of organization:
 - edu - educational institution
 - com - commercial entity
 - org - non-profit organization
 - net - network-based organization
 - Sometimes the suffix indicates the country:
 - uk - United Kingdom
 - au - Australia
 - ca - Canada
 - se - Sweden
 - New TLDs have recently been added:
 - biz, info, tv, name

IP and Internet Addresses

- Each computer on the Internet has a unique IP address, such as:
 - 204.192.116.2
- Most computers also have a unique Internet name, which also is referred to as an Internet address:
 - spencer.villanova.edu
 - kant.gestalt-llc.com
- The first part indicates a particular computer (spencer)
- The rest is the domain name, indicating the organization (villanova.edu)
The World Wide Web

- The World Wide Web allows many different types of information to be accessed using a common interface
- A browser is a program which accesses and presents information
 - text, graphics, video, sound, audio, executable programs
- A Web document usually contains links to other Web documents, creating a hypermedia environment
- The term Web comes from the fact that information is not organized in a linear fashion

Problem Solving

- The purpose of writing a program is to solve a problem
- The general steps in problem solving are:
 - Understand the problem
 - Dissect the problem into manageable pieces
 - Design a solution
 - Consider alternatives to the solution and refine it
 - Implement the solution
 - Test the solution and fix any problems that exist

The World Wide Web

- Web documents are often defined using the HyperText Markup Language (HTML)
- Information on the Web is found using a Uniform Resource Locator (URL):
 - http://www.lycos.com
 - http://www.villanova.edu/webinfo/domains.html
 - ftp://java.sun.com/applets/animation.zip
- A URL indicates a protocol (http), a domain, and possibly specific documents

Problem Solving

- Many software projects fail because the developer didn’t really understand the problem to be solved
- We must avoid assumptions and clarify ambiguities
- As problems and their solutions become larger, we must organize our development into manageable pieces
- This technique is fundamental to software development
- We will dissect our solutions into pieces called classes and objects, taking an object-oriented approach
Java

- A programming language specifies the words and symbols that we can use to write a program
- A programming language employs a set of rules that dictate how the words and symbols can be put together to form valid program statements
- The Java programming language was created by Sun Microsystems, Inc.
- It was introduced in 1995 and its popularity has grown quickly since
- It is an object-oriented language

Java Program Structure

- In the Java programming language:
 - A program is made up of one or more classes
 - A class contains one or more methods
 - A method contains program statements
- These terms will be explored in detail throughout the course
- A Java application always contains a method called main
- See lincoln.java (page 27)
Comments

- Comments in a program are called inline documentation.
- They should be included to explain the purpose of the program and describe processing steps.
- They do not affect how a program works.
- Java comments can take three forms:
 - `//` this comment runs to the end of the line
 - `/*` this comment runs to the terminating symbol, even across line breaks `*/`
 - `/**` this is a javadoc comment `*/`

Identifiers

- Identifiers are the words a programmer uses in a program.
- An identifier can be made up of letters, digits, the underscore character `_`, and the dollar sign.
- Identifiers cannot begin with a digit.
- Java is case sensitive - `Total`, `total`, and `TOTAL` are different identifiers.
- By convention, Java programmers use different case styles for different types of identifiers, such as:
 - `title` case for class names - `Lincoln`
 - `upper case` for constants - `MAXIMUM`

Reserved Words

- The Java reserved words:
 - `abstract` `else` `interface` `super`
 - `assert` `enum` `long` `switch`
 - `boolean` `extends` `native` `synchronized`
 - `break` `false` `new` `this`
 - `byte` `final` `null` `throw`
 - `case` `finally` `package` `throws`
 - `catch` `float` `private` `transient`
 - `char` `for` `protected` `true`
 - `class` `goto` `public` `try`
 - `const` `if` `return` `void`
 - `continue` `implements` `static` `volatile`
 - `default` `import` `strictfp` `while`
 - `double` `int`
White Space
- Spaces, blank lines, and tabs are called *white space*
- White space is used to separate words and symbols in a program
- Extra white space is ignored
- A valid Java program can be formatted in many ways
- Programs should be formatted to enhance readability, using consistent indentation
 - See *Lincoln2.java* (page 33)
 - See *Lincoln3.java* (page 34)

Programming Languages
- A program must be translated into machine language before it can be executed on a particular type of CPU
- This can be accomplished in several ways
- A *compiler* is a software tool which translates *source code* into a specific target language
- Often, that target language is the machine language for a particular CPU type
- The Java approach is somewhat different

Language Levels
- There are four programming language levels:
 - machine language
 - assembly language
 - high-level language
 - fourth-generation language
- Each type of CPU has its own specific *machine language*
- The other levels were created to make it easier for a human being to read and write programs

Java Translation
- The Java compiler translates Java source code into a special representation called *bytecode*
- Java bytecode is not the machine language for any traditional CPU
- Another software tool, called an *interpreter*, translates bytecode into machine language and executes it
- Therefore the Java compiler is not tied to any particular machine
- Java is considered to be *architecture-neutral*
Development Environments

- There are many environments for developing Java software:
 - Sun Java Development Kit (JDK)
 - Sun NetBeans
 - Borland JBuilder
 - Metrowerks CodeWarrior
 - Microsoft Visual J++
 - IBM Eclipse
 - Monash BlueJ
- Though the details of these environments differ, the basic compilation and execution process is essentially the same

Errors

- A program can have three types of errors
- The compiler will find syntax errors and other basic problems (compile-time errors)
 - If compile-time errors exist, an executable version of the program is not created
- A problem can occur during program execution, such as trying to divide by zero, which causes a program to terminate abnormally (run-time errors)
- A program may run, but produce incorrect results, perhaps using an incorrect formula (logical errors)
Introduction to Graphics
- The last one or two sections of each chapter of the textbook focus on graphical issues
- Most computer programs have graphical components
- A picture or drawing must be digitized for storage on a computer
- A picture consists of pixels, and each pixel is stored separately

Coordinate Systems
- Each pixel can be identified using a two-dimensional coordinate system
- When referring to a pixel in a Java program, we use a coordinate system with the origin in the top-left corner

Representing Color
- A black and white picture can be stored using one bit per pixel (0 = white and 1 = black)
- A colored picture requires more information; there are several techniques for representing colors
- For example, every color can be represented as a mixture of the three additive primary colors Red, Green, and Blue
- In Java, each color is represented by three numbers between 0 and 255 that collectively are called an RGB value
Summary

Chapter 1 has focused on:

- components of a computer
- how those components interact
- how computers store and manipulate information
- computer networks
- the Internet and the World Wide Web
- programming and programming languages
- graphic systems